데이터 라벨링 상담 예약

AI 프로젝트를 위한 고품질 데이터를 활용하세요
특정 요구 사항에 맞는 맞춤형 워크플로
도메인 지식을 갖춘 전문가 어노테이터
정확한 결과를 위한 신뢰할 수 있는 QA
AI 데이터 라벨링을 최적화하려면 지금 상담을 예약하세요 >
상담 예약
블로그로 돌아가기
/
Text Link
This is some text inside of a div block.
/
글로벌 자율 주행 준비: 지역별 데이터 문제

글로벌 자율 주행 준비: 지역별 데이터 문제

4.3.2025

1.내용 요약

자율 주행 기술의 도래는 교통 수단을 혁신하여 안전, 효율성 및 편의성을 잠재적으로 개선할 수 있다는 가능성을 내포하고 있습니다.그러나 이러한 잠재력의 실현은 방대한 데이터의 가용성, 품질, 보안 및 관리와 복잡하게 연결되어 있습니다.이 보고서는 유럽 연합 (EU), 북미 (NAM), 라틴 아메리카 (LATAM), 아시아 태평양 (APAC) 등 네 개의 주요 글로벌 지역에서 자율 주행 준비에 영향을 미치는 데이터 문제에 대한 포괄적인 분석을 제공합니다.

이러한 지역에서 데이터 인프라의 성숙도, 규제 프레임워크, 데이터 거버넌스에 대한 접근 방식은 상당한 차이를 보이며, 이는 자율 주행 차량에 대한 준비에 직접적인 영향을 미칩니다.

  • 아시아 태평양 특정 국가의 엄격한 데이터 현지화 법률과 빠른 기술 발전으로 특징지어지는 매우 다양한 규제 환경을 헤쳐나갑니다.
  • 북미 단편화된 규제 환경과 광범위한 테스트 및 초기 배포에서 생성되는 엄청난 규모의 데이터를 해결합니다.
  • 유럽 연합 엄격한 데이터 프라이버시 규제에 대한 강조는 개인 보호에 필수적이지만 자율 주행 차량 개발을 위한 데이터 수집 및 공유에 복잡성을 야기합니다.
  • 라틴 아메리카 인프라 제한과 디지털 연결 격차로 인해 중요한 데이터의 수집 및 활용을 방해하는 상당한 장애물에 직면해 있습니다.

데이터 문제의 지역적 격차를 이해하는 것은 광범위한 자율 주행으로 향하는 길을 전략적으로 탐색하려는 이해 관계자에게 매우 중요합니다.

2.소개: 자율 주행 준비에서 데이터의 중요한 역할

자율 주행 준비는 기술, 적절한 규제 환경, 인프라 및 대중의 수용이 모두 조율되어 있는지에 달려 있습니다.이러한 조율의 핵심에는 자율주행차 개발 및 배포의 모든 단계에서 원동력이 되는 생명선 역할을 하는 데이터가 있습니다.1

  • 교육: 머신러닝 알고리즘이 효과적으로 학습하고 적응하려면 다양한 실제 주행 시나리오를 포함하는 방대하고 다양하며 세심하게 레이블링된 데이터 세트가 필요합니다.2
  • 운영: 센서 (카메라, LiDAR, 레이더) 로부터 지속적으로 유입되는 데이터는 실시간 인식과 즉각적인 운전 결정을 가능하게 합니다.4
  • 내비게이션: 고화질의 자주 업데이트되는 지도 데이터는 정확한 위치 파악 및 도로망에 대한 포괄적인 이해를 위해 필수적입니다.6
  • 안전: 다양한 조건에서의 차량 성능에 대한 포괄적인 데이터 로깅과 엄격한 분석은 안전과 신뢰성을 보장하는 데 매우 중요합니다.8
  • 연결성: 차량, 인프라 및 클라우드 플랫폼 간의 원활한 데이터 교환을 통해 실시간 업데이트, 교통 관리 및 향상된 안전 기능이 가능합니다. 9

자율 주행에 내재된 데이터의 엄청난 양과 복잡한 특성으로 인해 지역마다 뚜렷한 특성이 나타나면서 전 세계적으로 만만치 않은 과제가 되고 있습니다.4.이 보고서는 EU, NAM, LATAM 및 APAC 내 자율 주행 준비를 방해하는 구체적인 데이터 문제를 탐구하고 각 중요 지역의 데이터와 교차하는 규제, 인프라, 기술 및 사회적 요인을 탐구합니다.

3.APAC의 자율 우위: 스마트 시티와 기술 리더십 활용

3.1.앞으로의 길: APAC에서의 자율 주행 모빌리티의 미래 구축

아시아 태평양 지역은 독특하고 복잡하고 역동적인 풍경을 제공합니다. 자율 주행 자동차 개발.이 다양한 시장에서 성공하려면 협업, 로컬라이제이션, 데이터 중심적 사고방식이라는 세 가지 핵심 축을 기반으로 하는 전략적 접근 방식이 필요합니다.

중국과 같은 국가의 엄격한 데이터 현지화법을 포함하여 APAC 전역의 이기종 데이터 거버넌스 프레임워크에는 다음을 포함한 유연하고 조정 가능한 접근 방식이 필요합니다.

  • 정부와 적극적으로 협력: 데이터 주권을 존중하면서 혁신을 촉진하는 균형 잡힌 접근 방식을 지지하면서 각 국가의 정책 입안자와 협력하여 진화하는 규정을 이해하고 구체화합니다.
  • 지역별 데이터 전략 개발: 강력한 데이터 인프라 및 처리 기능 구현 내에서 현지 규정을 준수하고 국가 간 데이터 전송 문제를 최소화하기 위한 주요 시장

국가 간 데이터 흐름, 데이터 품질, 표준화 및 상호 운용성의 복잡성으로 인해 다음을 포함한 협력적 접근 방식이 필요합니다.

  • 개방형 플랫폼 및 데이터 공유 육성: Baidu의 Apollo 프로젝트와 같은 이니셔티브를 지원하여 데이터 주권 문제를 존중하면서 데이터 공유 및 협업을 장려합니다.
  • 공통 표준 수립: 상호 운용성 및 벤치마킹을 용이하게 하기 위해 표준화된 데이터 형식 및 주석 지침의 개발 및 채택을 주도합니다.

APAC 전역에서 급속한 도시화와 스마트 시티 이니셔티브의 확산은 AV 배포를 위한 독특한 기회를 창출합니다.이를 위해서는 다음이 필요합니다.

  • AV와 스마트 인프라 통합: 최적화된 교통 관리, 라우팅 및 안전을 위해 자율 주행 차량과 스마트 시티 인프라 간의 원활한 데이터 교환을 지원하는 기술과 시스템을 개발합니다.
  • 사이버 보안 우선 순위 지정: 강력한 사이버 보안 조치를 구현하여 차량과 인프라 간에 공유되는 데이터의 무결성과 프라이버시를 보호합니다.

APAC 전역의 기술과 자동화에 대한 다양한 문화적 태도는 수용에 큰 영향을 미칩니다.업계는 반드시 다음을 수행해야 합니다.

  • 철저한 문화 조사 수행: 각 시장의 자율 주행 차량에 대한 구체적인 인식, 기대 및 우려 사항을 이해합니다.
  • 문화적으로 민감한 커뮤니케이션 개발: 현지 가치에 공감하고 대중의 신뢰를 구축할 수 있도록 맞춤형 메시징 및 커뮤니케이션 전략을 수립합니다.
  • AV 행동 조정: 가능한 경우 현지 표준에 맞게 운전 스타일을 조정하십시오.

3.2 이기종 데이터 거버넌스 프레임워크

아시아 태평양 (APAC) 지역은 매우 다양한 데이터 거버넌스 프레임워크 환경을 특징으로 하며, 이는 자율 주행 차량의 개발 및 배포에 상당한 복잡성을 안겨줍니다. 1.특히 중국과 같은 APAC 내 여러 국가에서는 엄격한 데이터 현지화 법을 시행하고 있습니다. 1.이러한 규정은 자국 내에서 생성된 데이터를 국내에서 저장 및 처리하도록 규정하는 경우가 많으며, 이는 자율 주행 차량 개발 및 운영에 필수적인 국가 간 데이터 흐름, 저장 및 처리 활동에 상당한 영향을 미칠 수 있습니다.자율주행차에 대한 정부 지원 수준과 규제 체계의 성숙도 또한 APAC 지역마다 크게 다릅니다. 70.많은 APAC 국가들이 이 부문의 성장을 지원하기 위해 산업 프레임워크와 규정을 적극적으로 수립하고 있지만 70, 특히 데이터 현지화 요구 사항과 관련된 이러한 프레임워크의 이질성은 지역 내 여러 시장에서 사업을 운영하려는 글로벌 자율 주행 차량 회사에 상당한 과제를 안겨줍니다.이러한 기업은 종종 현지 데이터 인프라를 구축하고 각 국가의 특정 데이터 처리 프로토콜을 준수해야 하므로 운영 비용과 물류 복잡성이 증가합니다.

3.3.국가 간 데이터 흐름의 복잡성과 다양한 법적 해석

아시아 태평양 지역 내 여러 국가로 데이터를 전송하는 것은 데이터 주권 모델이 다르고 데이터 보호법에 대한 법적 해석이 다양하기 때문에 더욱 복잡합니다. 1.예를 들어 중국은 데이터 주권을 사이버 공간에서의 국가 주권의 연장선으로 간주하여 데이터 주권을 매우 중시하고 있으며, 이로 인해 데이터의 국경 간 전송을 잠재적으로 제한할 수 있습니다. 1.자율 주행 차량 개발에는 종종 다음과 같은 공유가 필요하기 때문에 이러한 복잡성은 이 지역의 공동 연구 개발 노력을 크게 방해할 수 있습니다. 대규모 데이터세트 교육, 검증 및 테스트 목적으로.국경 간 원활한 데이터 전송에 대한 제한은 이러한 중요한 프로세스를 방해하여 APAC 내 자율 주행의 전반적인 혁신 및 기술 발전 속도를 잠재적으로 늦출 수 있습니다.각 국가의 개별 데이터 주권을 존중하면서 효율적인 국경 간 데이터 흐름을 촉진하는 것은 지역 전체의 자율 주행 기술 발전을 가속화하기 위해 효과적으로 해결해야 할 주요 과제로 남아 있습니다.

3.4.데이터 품질, 표준화 및 상호 운용성과 관련된 문제

일관된 데이터 품질을 보장하고, 강력한 표준화 관행을 확립하고, 자율 주행 자동차 개발자의 다양한 환경과 APAC의 다양한 기술 전반에서 원활한 상호 운용성을 달성하는 것은 중대한 과제입니다. 1.자율 주행의 빠른 기술 개발 속도는 법률 제정 속도를 앞지르는 경우가 많기 때문에 많은 국가에서 자율 주행 시스템 내 데이터 보안 문제를 해결할 때 구체적인 법적 지침이 부족합니다.

오픈 플랫폼에 소스 코드, 데이터 및 다양한 협업 옵션을 제공하는 것을 목표로 하는 Baidu의 Apollo 프로젝트와 같은 이니셔티브 18는 APAC 자율 주행 자동차 산업 내에서 더 큰 데이터 공유 및 표준화를 촉진하기 위한 중요한 단계를 나타냅니다.APAC의 다양한 자율주행차 개발 생태계에서 보다 효과적인 협업을 가능하게 하고 의미 있는 벤치마킹을 촉진하기 위해서는 표준화된 데이터 형식과 포괄적인 주석 지침의 개발과 광범위한 채택이 필수적입니다.

3.5.급속한 도시화와 스마트 시티 이니셔티브의 역할

APAC 지역 전반의 빠른 도시화와 스마트 시티 이니셔티브의 확산은 자율 주행 자동차 채택의 중요한 원동력이며, 관련 데이터 문제에도 지대한 영향을 미칩니다. 25.APAC의 많은 정부는 도시 이동성을 향상시키기 위해 스마트 인프라와 첨단 교통 시스템에 상당한 투자를 하고 있습니다. 자율 주행 차량은 이러한 포괄적인 스마트 시티 전략의 핵심 구성 요소로 간주되는 경우가 많습니다. 72.이 통합의 중요한 측면은 자율 주행 자동차를 위한 경로 계획이는 자율 주행 차량과 스마트 시티 인프라 간의 원활한 데이터 교환에 의존합니다.이를 통해 효율적인 교통 관리, 최적화된 경로 계획, 전반적인 안전 강화가 보장됩니다.APAC의 스마트 시티 확장은 상호 연결된 도시 환경에서 원활한 통합과 원활한 운영을 위해 데이터가 필수적인 자율 주행 기술에 엄청난 기회이자 고유한 과제를 안겨줍니다.그러나 이러한 수준의 통합을 위해서는 교환된 정보의 무결성과 프라이버시를 보호하기 위한 강력한 데이터 공유 메커니즘과 엄격한 사이버 보안 조치도 필요합니다.

3.6.문화적 요인

APAC 지역 내 여러 국가에 존재하는 기술, 안전 및 자동화에 대한 다양한 문화적 태도는 자율 주행 자동차에 대한 수용과 구체적인 기대에 상당한 영향을 미칩니다. 21.기술 전반에 대한 문화적 태도는 확립된 사회적 관습과 함께 자율 주행 자동차의 개발과 대중의 수용에 큰 영향을 미칠 수 있습니다.80.예를 들어, 일부 연구에 따르면 일본의 개인은 다른 지역에 비해 자율주행차에 대해 더 중립적인 태도를 취하는 경향이 있습니다. 29.호프스테데의 6-D 모델과 같은 문화 모델에 정의된 집단주의, 전력 거리, 불확실성 회피 정도와 같은 요소는 자율주행차의 행동 및 안전에 대한 대중의 수용과 구체적인 기대를 형성하는 데 중요한 역할을 합니다.30.특히 중국과 같은 일부 APAC 국가는 자동화의 잠재력에 대해 특히 높은 수준의 낙관론과 열정을 보였습니다. 54. Understanding these intricate cultural nuances is absolutely essential for autonomous vehicle developers as they strive to tailor their technology and refine their communication strategies to resonate effectively with the specific preferences and expectations of individual markets within the APAC region.

4. Innovation-Fueled, Scalability-Focused: The North American Path to Autonomous Driving

4.1 Beyond Silicon Valley: A Coast-to-Coast Strategy for North American AVs

The North American market presents both immense opportunities and unique challenges for the autonomous vehicle industry. Realizing the full potential of this technology requires a multi-pronged strategy focused on the following critical areas:

  • A Unified Regulatory Framework is Essential: The fragmented regulatory landscape, particularly in the United States, hinders progress. A harmonized, national framework for data privacy, security, and AV operation is urgently needed. This includes clear guidelines on issues like the "right to repair" and access to vehicle telematics data. A consistent regulatory environment will reduce costs, foster innovation, and accelerate deployment. Industry stakeholders must actively engage with policymakers to achieve this.

  • Mastering the Data Deluge is Non-Negotiable: The sheer volume of data generated by AVs in North America demands a sophisticated and scalable data management strategy. This requires significant investment in robust storage solutions, high-performance processing, and effective data governance.
  • HD Mapping and Sensor Excellence are Paramount: The safety and reliability of AVs in North America are directly dependent on the quality of HD maps and the robustness of sensor systems. 
  • Infrastructure and Processing Power Must Keep Pace: The widespread deployment of AVs calls for collaboration between industry and government to invest in smart infrastructure and high-speed communication networks and on-board and off-board (cloud-based) processing power to handle the immense data demands.
  • A User-Centric Approach is Critical: Public acceptance is paramount. A deep understanding of North American driving cultures, risk perceptions, and attitudes toward automation is essential to ensure the widespread adoption of AVs

4.2 Fragmented Regulatory Environment

The regulatory landscape for autonomous vehicles in North America, particularly within the United States, is characterized by a lack of comprehensive federal data privacy and security laws, a stark contrast to the more unified approach seen in Canada 35. While as of early 2025, 25 states in the US have adopted autonomous vehicle statutes, a comprehensive federal legal framework remains absent 35. This absence leads to a patchwork of regulations across the country, with significant variations in requirements for autonomous vehicle testing, deployment, and the reporting of data related to their operation 35. This fragmented approach creates considerable challenges for autonomous vehicle developers, who must navigate a complex web of state-specific regulations concerning data handling, compliance, and standardization. Adding to this complexity is the ongoing debate surrounding the "right to repair," which includes discussions about third-party access to vehicle telematics data for repair and maintenance purposes 37. The autonomous vehicle industry is actively advocating for the establishment of a national policy framework to provide greater clarity and consistency across jurisdictions 35. The current state-by-state regulatory environment in the US introduces unnecessary complexity and costs for companies operating across multiple states, highlighting the need for a unified federal approach to facilitate innovation and ensure consistent standards for autonomous vehicle data management.

4.4 Scale and Management of Vast Datasets

The extensive testing and early deployments of autonomous vehicles in North America have resulted in the generation of immense volumes of data4. Self-driving cars are capable of producing around one terabyte of data per hour, and some estimates suggest this could reach as high as 40 terabytes per hour, depending on the sensor configuration and operational context4. Managing these massive datasets efficiently and cost-effectively presents a significant challenge, encompassing the need for robust storage solutions, powerful processing capabilities, and effective data governance strategies. 

Cloud computing and edge computing play crucial roles in addressing these challenges 4. Edge computing, which involves processing data onboard the vehicle itself, helps to minimize latency, a critical factor for real-time decision-making in autonomous driving 4. Autonomous vehicles are increasingly forming complex hybrid networks that integrate centralized data centers, cloud services, and numerous peripheral nodes, creating a sophisticated data management ecosystem 4

The sheer scale of data generated in NAM calls for the adoption of advanced data management solutions and a robust IT infrastructure to adequately support the ongoing development and widespread operation of autonomous vehicles. Without efficient and scalable data management practices, the potential value that can be derived from these vast amounts of collected data will be significantly limited, thereby hindering the overall progress of autonomous driving technology in the region.

4.5. High-Definition Mapping and Sensor Data Quality

The safety and reliability of autonomous vehicles in North America are critically dependent on the availability of high-quality, high-definition maps and the robustness of their sensor systems, which typically include LiDAR, radar, and cameras.3

High-definition maps deliver the critical, granular information about the road network – lane markings, traffic signals, crosswalks, and more – that is essential for autonomous vehicle operation.44 Without this foundational "digital understanding," an autonomous vehicle cannot plan routes, anticipate hazards, or adhere to traffic laws. Maintaining up-to-date HD maps remains a challenge, particularly in the North American dynamic urban environments where road conditions and infrastructure are frequently changing. 

Robust sensor systems, including LiDAR, radar, and cameras, are the vehicle's "eyes and ears," gathering raw data about the surrounding environment. Sensor fusion – the process of combining data from multiple sensor types – significantly enhances perception accuracy and robustness. This redundancy makes the system less susceptible to individual sensor failures and improves overall reliability, especially in challenging conditions (e.g., low light, inclement weather).

Given North America’s vast and diverse geography, from bustling city centers to remote rural highways, from deserts to snowy mountains, and the deep-seated reliance of North Americans on personal vehicles, it is evident that the successful and safe deployment of autonomous vehicles across the region is inextricably linked to the consistent availability of high-quality mapping data and the unwavering reliability of sensor systems. The region's unique demands require flawless execution in these areas to ensure the safe, reliable, and widespread adoption of autonomous driving.

4.6. Infrastructure Requirements and Data Processing Capabilities

The widespread adoption of autonomous vehicles in NAM  depends on significant infrastructure adjustments and the development of robust data processing capabilities 3. This includes potential investments in the development of smart infrastructure, such as connected traffic signals and roadside units, as well as the expansion of high-speed communication networks to support the data exchange requirements of autonomous vehicles. Autonomous vehicles generate and consume vast amounts of data in real-time, requiring efficient onboard and offboard processing capabilities 4. Onboard computers equipped with multiple processing cores are essential for handling the immediate data processing demands of perception and decision-making 4. Furthermore, offboard data centers and cloud computing resources are necessary for tasks such as map updates, route planning, and the analysis of large-scale driving data. Adequate infrastructure and robust data processing capabilities are therefore fundamental for the successful deployment and operation of autonomous vehicles in NAM, requiring substantial financial investment and strategic planning from both public and private sector stakeholders.

4.7. Cultural Factors

Driving cultures, risk perceptions, and attitudes towards automation in the United States and Canada play a significant role in shaping the acceptance and specific data requirements for autonomous vehicles 34. Research indicates that trust in autonomous vehicles is influenced by various factors, including age, level of education, and an individual's general background 34. Furthermore, cultural differences have been shown to shape users' overall views and expectations regarding automated vehicles 54. Understanding the nuances of these cultural factors is essential for autonomous vehicle developers in NAM, as they need to design and train their systems to align with user expectations and build public trust. This includes considering differences in trust levels and expectations concerning how autonomous vehicles should behave in various driving scenarios across different demographic groups. Public acceptance is a critical factor in the successful adoption of autonomous vehicles, and developers must take these cultural considerations into account to ensure that consumers in North America readily embrace the technology.

5. Data-Driven, Safety-First: The European Approach to Autonomous Driving

5.1 Unlocking the European AV Market: A Roadmap for Compliance and Innovation

The European Union presents a unique and complex landscape for autonomous vehicle development and deployment. While the region offers immense market potential, it's also characterized by a regulatory environment that prioritizes privacy, security, and ethical AI development above all else. Success in Europe will not be solely determined by technological prowess; it will hinge on a proactive and holistic strategy that addresses the following key pillars:

  • Privacy-by-Design as a Competitive Advantage: Understand that the GDPR and the AI Act are not simply hurdles to overcome; they are a reflection of the values that drive the European market. AV manufacturers must embrace "Privacy-by-Design" and "Security-by-Design" not as compliance burdens but as core principles that build trust and foster long-term consumer acceptance. This means embedding data minimization, transparency, and robust security measures into the very foundation of AV systems, from initial design to ongoing operation. Companies that can demonstrably showcase their commitment to these principles will gain a significant competitive edge.

  • Data Acquisition and Annotation: Collaboration is Key: The scarcity of high-quality, diverse, and well-annotated training data remains a significant bottleneck in Europe. Relying solely on proprietary data collection is unlikely to be sufficient or cost-effective. AV executives should actively explore collaborative data-sharing initiatives (like the Zenseact Open Dataset), invest in innovative data acquisition methods (like ALP.Lab's traffic monitoring approach), and partner with specialized data annotation providers. Building a robust European data ecosystem is a shared challenge that requires a collective solution.

  • Cybersecurity: A Non-Negotiable Imperative: The increasing connectivity and complexity of AVs create an expanding attack surface. The EU's stringent cybersecurity regulations (UNECE R 155, Cyber Resilience Act) reflect a justified concern. AV executives must prioritize cybersecurity at every stage of development, implementing continuous risk assessments, embracing "security by design," and proactively addressing AI-specific vulnerabilities. A single, high-profile security breach could severely damage consumer trust and set back the entire industry in Europe.

  • Cultural Nuances: The Human Factor: Europe is not a monolithic market. Driving cultures, traffic norms, and public perceptions of AV technology vary significantly across member states. Imagine driving in Germany vs. driving in Bulgaria.  AV systems must be adaptable and tailored to these cultural nuances to ensure safe and accepted operation. This requires gathering culturally specific data, understanding local regulations, and engaging with local communities to build trust and address concerns. Hofstede's cultural dimensions can inform this crucial adaptation process.

  • Embrace the regulatory headwinds: While the path forward in Europe will not be without its difficulties, it also serves as an opportunity to create a more safe and ethical product. AV executives can use these regulations to become thought leaders, creating the best-in-class AV. 

5.2. Data Privacy and Security Regulations

The regulatory landscape in the EU presents unique challenges and opportunities for autonomous driving, shaped by a strong emphasis on data privacy, security, and the responsible use of artificial intelligence.

  • Privacy-First Regulations: The GDPR's broad definition of personal data presents a significant hurdle for AV development. A substantial portion of the data needed to train AVs—such as real-time location, speed, movement, and even in-cabin monitoring from semi-autonomous vehicles—is likely to be classified as personal data under the GDPR. Consequently, to utilize this data for training AV algorithms, companies must establish a strong legal basis and ensure compliance with GDPR principles, including transparency, purpose limitation, and data minimization. This regulatory requirement adds complexity and cost to the process of building robust training datasets, a critical element for successful AV deployment.
  • Cybersecurity Mandates: The upcoming European Cyber Resilience Act will establish rigorous cybersecurity requirements for all hardware and software with digital elements, directly impacting the automotive sector.13 This builds upon existing regulations, such as UNECE R 155, which requires a certified Cyber Security Management System (CSMS) for vehicle type-approval.15
  • Risk-Based AI Regulation: The EU AI Act introduces a risk-based approach. AI systems in autonomous vehicles affecting driving and passenger safety are classified as high-risk, requiring adherence to stringent standards for data security, transparency, human oversight, and robustness16. This framework underscores the importance of "compliance by design."13

These robust regulations, while crucial for safeguarding individual rights, present complexities for autonomous driving advancement. 

5.3 Availability, Quality, and Annotation of Training Data

The availability of diverse and representative datasets is seen as one of the biggest obstacles to AV development in EU2. A Swedish expert in autonomous systems estimates that self-driving cars will not be widely available for at least a decade, citing data as a key contributing factor to the delay.2 Several initiatives, such as the Zenseact Open Dataset (composed of multi-modal data collected across 14 different European countries), attempt to contribute to the pool of available data19. ALP.Lab in Austria has adopted a unique approach by utilizing traffic monitoring as a source of training data, enabling the collection of an impressive seven million kilometers of data annually without the need for extensive test drives 22.

Despite these advancements, ensuring the consistently high quality of data and the accurate annotation of data for crucial tasks such as object detection, lane keeping, and traffic sign recognition remains a significant challenge 2. High-definition mapping data plays an increasingly vital role in achieving precise localization and enhancing overall navigation capabilities for autonomous vehicles 6. Moreover, specialized autonomous vehicle data labeling services are indispensable for effectively training the machine learning models that underpin accurate predictive capabilities in autonomous driving systems 25. While EMEA has made considerable progress in making open datasets available to the research and development community, the ongoing pursuit of data that is not only abundant but also of high quality, diverse in its representation of real-world scenarios, and comprehensively annotated remains a critical endeavor for achieving robust and dependable autonomous driving technology. The ultimate effectiveness of the artificial intelligence algorithms at the heart of autonomous vehicles is directly correlated with the caliber and volume of the data upon which they are trained. The presence of biases within training data can inadvertently lead to unpredictable or even unsafe behaviors by the autonomous system2.

5.4. Cybersecurity Threats and Vulnerabilities

The increasing sophistication and connectivity of autonomous vehicles lead to a significant expansion of their attack surface, making them more susceptible to cybersecurity threats and vulnerabilities 9. Connected and autonomous vehicles (CAVs) operate through intricate supporting ecosystems, which, while enabling advanced functionalities, also introduce potential vulnerabilities and create more avenues for malicious attacks 9. Such vehicles are complex systems comprising millions of lines of code, a level of complexity that inherently increases the likelihood of undiscovered vulnerabilities that could be exploited 9. Artificial intelligence systems within autonomous vehicles are particularly vulnerable to intentional attacks specifically designed to interfere with their operation and potentially disrupt safety-critical functions26. Given these evolving threats, a proactive approach that integrates security considerations from the initial design phase, often referred to as "security by design," is crucial. Furthermore, the implementation of continuous risk assessment processes is essential for identifying potential vulnerabilities and emerging threats related to the adoption of AI in autonomous vehicles 13. The European Union Agency for Cybersecurity (ENISA) and the Joint Research Centre (JRC) have emphasized that security should not be an afterthought but rather a fundamental prerequisite for the trustworthy and reliable deployment of autonomous vehicles on Europe's roads 26.

5.5. Cultural Factors

The diverse tapestry of driving cultures established traffic norms, and varying public perceptions across the EU significantly influence the specific data requirements and the overall acceptance of autonomous vehicles 29. Research has consistently highlighted the existence of cross-cultural differences in fundamental aspects such as driving skills, common driving behaviors, perceptions of safety on the road, and general attitudes towards the adoption of autonomous vehicle technology 29. Notably, the level of trust that individuals place in automation systems can also differ considerably across various cultures 29. Public opinion and the degree of acceptance are critical factors that will ultimately determine the successful integration of autonomous vehicles into society 30. The application of cultural dimensions, such as those defined in Hofstede's 6-D model (including uncertainty avoidance and individualism), provides a valuable framework for analyzing and understanding these cross-cultural variations in the context of autonomous vehicle adoption 30. Therefore, it is paramount that autonomous driving systems and their associated data processing strategies are carefully tailored to align with the specific cultural nuances and expectations prevalent in different countries within EMEA. This culturally sensitive approach is essential for ensuring widespread user acceptance and the safe integration of autonomous vehicles into the existing transportation systems across the region.

6. From Potential to Progress: Charting the Course for Autonomous Driving in LATAM

6.1. A Path to Autonomous Driving Success in Latin America

Latin America presents a unique and complex landscape for autonomous vehicle development and deployment. While the region holds significant long-term potential, realizing that potential requires a nuanced strategy that acknowledges and addresses the specific challenges of the LATAM market. The following key pillars are essential for success:

  • Embrace Regulatory Uncertainty as an Opportunity: The evolving and fragmented regulatory environment in LATAM should not be viewed solely as an obstacle. Instead, it presents an opportunity for proactive engagement, which would allow the industry to proactively participate in shaping a more homogenous regulatory framework.
  • Address Infrastructure Limitations with Innovative Solutions: The significant infrastructure gaps in LATAM demand creative solutions such as:
    • Exploring  "Infrastructure-Lite" Approaches: Develop AV technologies that are less reliant on perfect road conditions and ubiquitous connectivity.
    • Partnering with Local Stakeholders: Collaborate with telecommunications companies, infrastructure providers, and local governments to identify and address specific infrastructure needs.
    • Considering Electric Vehicle Synergies: Explore opportunities to leverage the growing electric vehicle market to build out charging infrastructure that can also support AVs.
  • Develop LATAM-Specific Data Acquisition and Processing Strategies: The unique characteristics of LATAM require tailored data solutions such as investing in localized mapping efforts, adapting sensor technology, and leveraging local expertise by partnering with universities, research institutions, and local tech companies.
  • Understanding and Addressing the Economic Realities: The price sensitivity of the LATAM market and the potential economic benefits of AVs must be carefully considered
  • Build Trust Through Cultural Understanding: Public acceptance is crucial, and trust levels vary. The industry must understand the specific beliefs, perceptions, and expectations regarding autonomous technology in different LATAM countries and develop culturally sensitive communication campaigns that address concerns and build trust.

6.2 Evolving Data Protection Laws and Regulatory Uncertainties

The landscape of data protection laws in key Latin American (LATAM) countries, including Brazil, Mexico, Argentina, Colombia, and Chile, is currently evolving, with frameworks undergoing continuous development 56. Brazil has implemented its first comprehensive data protection regulation, known as the Lei Geral de Proteção de Dados (LGPD) 57. Similarly, Mexico has established a comprehensive data protection framework under the Ley Federal de Protección de Datos Personales en Posesión de Particulares (LFPDPPP) 57. Argentina places a strong emphasis on data protection through its Personal Data Protection Law 57. The constitution of Colombia recognizes the fundamental right to data privacy 57, while Chile's Ley 19.628/1999, also known as the Personal Data Protection Law (PDPL), outlines specific rules for the processing of personal data 57. Despite these advancements, the regulatory environment surrounding autonomous vehicle testing and deployment across the LATAM region remains largely uncertain 56. Regulatory frameworks are still in the early stages of development and exhibit significant variations between different countries and even within cities 56. To foster growth and provide a stable environment for innovation and investment in the autonomous driving sector, there is a clear need for greater harmonization of regulations across the LATAM region 56. The evolving and often fragmented regulatory landscape currently presents challenges for autonomous vehicle development, particularly concerning data governance and ensuring consistent compliance across different jurisdictions.

6.3 Significant Infrastructure Limitations and Digital Connectivity Gaps

A major impediment to the advancement of autonomous driving in LATAM is the presence of significant infrastructure limitations and substantial gaps in digital connectivity 56. The region suffers from inadequate road networks, a limited availability of charging infrastructure for electric vehicles, and outdated public transportation systems 56. Furthermore, the existing infrastructure gap is compounded by a lack of consistent and uninterrupted digital connectivity that spans the entirety of the road network, posing a considerable hurdle for the collection, transmission, and real-time operation of autonomous vehicles 58. The development of smart city infrastructure, which could provide crucial support for autonomous vehicle operations, is also in its nascent stages across much of LATAM 56. Given that autonomous vehicles heavily rely on constant connectivity and well-maintained infrastructure to ensure safe and efficient operation, the current state of infrastructure in many parts of LATAM represents a significant barrier to their widespread adoption and deployment.

6.4. Challenges in Acquiring Accurate Mapping and Sensor Data

Acquiring accurate and comprehensive mapping data for the diverse terrains and rapidly changing urban environments prevalent in LATAM presents a considerable challenge 7. The quality of data collected by sensors can be affected by various environmental factors and the impacts of climate change, leading to uncertainty within the datasets used for training the deep learning models that power autonomous vehicles 61. Additionally, sensor performance can be inconsistent across different weather conditions, and there is a lack of universal standards and comprehensive research specifically focused on sensor failure in the context of LATAM's unique environmental conditions 61. Despite these regional challenges, Chile has emerged as a leader in autonomous vehicle technology within LATAM, having successfully implemented the first Latin American Autonomous Vehicle project 56. The unique geographical and environmental characteristics of LATAM calls for  the development of specialized approaches to mapping and sensor data acquisition that are currently still in their early stages of development. Autonomous vehicles require detailed and accurate maps that are specifically tailored to the distinct features of LATAM's roads and surrounding environments to ensure safe and reliable navigation.

6.5. Influence of Market Conditions and Economic Factors

Market conditions, economic constraints, and the levels of investment in research and development significantly influence data availability and the overall pace of autonomous vehicle development within LATAM 56. Price sensitivity is a major factor that impacts consumer decisions regarding the purchase of autonomous vehicles in the region 58. However, autonomous vehicles also hold the potential to address the shortage of professional drivers in the logistics sector within LATAM, which could lead to operational efficiencies and cost savings 58. While the potential benefits of autonomous vehicles are attractive, the substantial costs associated with their development and deployment can present a considerable barrier in the specific economic context of LATAM. The interplay between these market forces and economic realities will continue to shape the trajectory of autonomous vehicle adoption and the development of the necessary data infrastructure across the region.

6.6. Cultural Factors

The adoption of autonomous vehicles in LATAM is influenced by a complex interplay of cultural beliefs, the level of public trust in technology, and the general acceptance of automation 34. Research indicates that in Latin America, a higher degree of trust in others is associated with more positive perceptions of autonomous vehicles 68. Public opinion and the overall acceptance of this technology are crucial factors that will determine the success of its integration into society 55. Survey data on public sentiment and expectations regarding self-driving cars within LATAM reveal varying degrees of optimism across different countries 34. For instance, a survey conducted in 2020 indicated that Peruvian respondents were the most likely to believe that self-driving cars would become a common sight in their towns or cities 69. Understanding these cultural nuances and the specific public perceptions prevalent in LATAM is essential for tailoring both the autonomous vehicle technology itself and the communication strategies used to promote its adoption. The level of trust that different cultures place in autonomous systems can vary significantly, directly influencing the willingness of people to embrace and utilize this emerging technology.

7. Charting a Data-Driven Path for Global Autonomous Driving Readiness

Data serves as the bedrock upon which the future of autonomous driving will be built. Realizing the transformative potential of this technology hinges on our ability to effectively address the significant and diverse data challenges that exist across EMEA, NAM, LATAM, and APAC. This report has highlighted the unique regulatory landscapes, infrastructural limitations, technological hurdles, and cultural nuances that shape these challenges in each region. Overcoming these obstacles requires the implementation of targeted and region-specific strategies that carefully consider the interplay of regulatory, infrastructural, technological, and cultural factors. A collaborative and data-driven approach involving close cooperation between governments, industry stakeholders, and research institutions is not merely a technical necessity but a strategic imperative for unlocking the full societal and economic benefits that autonomous driving promises worldwide. A concerted global effort focused on proactively addressing the identified data challenges will pave the way for the development of safer, more efficient, and ultimately more sustainable transportation systems for the future.

  1. Data Security in Autonomous Driving: Multifaceted Challenges of Technology, Law, and Social Ethics - MDPI, accessed on March 18, 2025, https://www.mdpi.com/2032-6653/16/1/6
  2. Overcoming Unbalanced Training Data for Safer Autonomous Driving - EE Times Europe, accessed on March 18, 2025, https://www.eetimes.eu/overcoming-unbalanced-training-data-for-safer-autonomous-driving/
  3. Top Autonomous Vehicle Challenges and How to Solve Them ..., accessed on March 18, 2025, https://www.taskus.com/insights/autonomous-vehicle-challenges/
  4. Addressing Data Processing Challenges in Autonomous Vehicles | IoT For All, accessed on March 18, 2025, https://www.iotforall.com/addressing-data-processing-challenges-in-autonomous-vehicles
  5. ORISE Scholarship Winner: Autonomous Driving and Its Sensor Technology, accessed on March 18, 2025, https://orise.orau.gov/internships-fellowships/documents/scholarships/autonomous-driving/autonomous-driving-and-its-sensor-technology.pdf
  6. Is Autonomous Vehicle Mapping the Answer to the Latest European Car Safety Standards?, accessed on March 18, 2025, https://www.abiresearch.com/blog/autonomous-vehicle-mapping-
  7. Leveraging Mapping Data for Precise Localization in Autonomous Driving - Voxelmaps, accessed on March 18, 2025, https://www.voxelmaps.com/news/leveraging-mapping-data-for-precise-localization-in-autonomous-driving
  8. Autonomous Vehicles: A Public Regulatory Policy Guide, accessed on March 18, 2025, https://www.nspe.org/resources/issues-advocacy/action-issues/autonomous-vehicles/autonomous-vehicles-public-regulatory
  9. Security Challenges for Connected and Autonomous Vehicles - BAE Systems, accessed on March 18, 2025, https://www.baesystems.com/en/digital/feature/security-challenges-for-connected-and-autonomous-vehicles
  10. Connected and Automated Vehicles: Infrastructure, Applications, Security, Critical Challenges, and Future Aspects - MDPI, accessed on March 18, 2025, https://www.mdpi.com/2227-7080/11/5/117
  11. Autonomous Vehicles: Reshaping IT Infrastructure - CoreSite, accessed on March 18, 2025, https://www.coresite.com/blog/autonomous-vehicles-reshaping-it-infrastructure
  12. Autonomous Driving and the Modern Data Center – Why High-Performance Memory and Storage Solutions Are Essential - Samsung Semiconductor, accessed on March 18, 2025, https://semiconductor.samsung.com/news-events/tech-blog/autonomous-driving-and-the-modern-data-center/
  13. The Impact of Recent EU Regulations on the Evolution of Automotive Technologies with Autonomous Features | Netherlands - RSM Global, accessed on March 18, 2025, https://www.rsm.global/netherlands/en/insights/impact-recent-eu-regulations-evolution-automotive-technologies-autonomous-features
  14. Autonomous driving and data protection – what do vehicle manufacturers need to know? - Taylor Wessing, accessed on March 18, 2025, https://www.taylorwessing.com/en/interface/2024/onwards-and-upwards/autonomous-driving-and-data-protection
  15. How Vehicle Manufacturers and their Suppliers Should Prepare to Comply with European Autonomous and Automated Vehicle Legislation – An 8-point guide - Bird & Bird, accessed on March 18, 2025, https://www.twobirds.com/en/insights/2024/belgium/how-vehicle-manufacturers-and-their-suppliers-should-prepare-to-comply-with-european-autonomous-and
  16. EU AI Act and the automotive industry – legal challenges ahead - Taylor Wessing, accessed on March 18, 2025, https://www.taylorwessing.com/en/interface/2024/ai-act-sector-focus/eu-ai-act-and-the-automotive-industry
  17. Driving Innovation: Navigating the EU AI Act's Impact on Autonomous Vehicles - Holistic AI, accessed on March 18, 2025, https://www.holisticai.com/blog/driving-innovation-navigating-eu-ai-acts-impact-on-autonomous-vehicles
  18. Datasets on automated driving (2021), accessed on March 18, 2025, https://www.connectedautomateddriving.eu/data-sharing/topics-in-data-sharing/datasets-on-automated-driving-2021/
  19. Zenseact Open Dataset: Home, accessed on March 18, 2025, https://zod.zenseact.com/
  20. MAN TruckScenes: the world's first freely available sensor and driving data for autonomous trucks, accessed on March 18, 2025, https://press.mantruckandbus.com/corporate/man-truckscenes-the-worlds-first-freely-available-sensor-and-driving-data-for-autonomous-trucks/
  21. A Survey on Autonomous Driving Datasets: Data Statistic, Annotation, and Outlook - arXiv, accessed on March 18, 2025, https://arxiv.org/html/2401.01454v1
  22. European technology award for sustainable method of training autonomous cars - ALP.Lab, accessed on March 18, 2025, https://www.alp-lab.at/wp-content/uploads/2020/05/20210716_alplab_techad-europe-award_press-release_final_en.pdf
  23. AI Algorithms for Autonomous Vehicles: How Advanced Data Solutions Improve Vehicle Perception and Decision-Making - Voxelmaps, accessed on March 18, 2025, https://www.voxelmaps.com/news/ai-algorithms-for-autonomous-vehicles
  24. NDS White Paper - The Benefits of a Common Map Data Standard for Autonomous Driving, accessed on March 18, 2025, https://nds-association.org/wp-content/uploads/2019/06/NDS-White-Paper__Benefits-of-Map-Data-Standard-for-Autonomous-Driving.pdf
  25. Autonomous Vehicle Trends: What's Next for Autonomous Driving? - LTS Global Digital Services, accessed on March 18, 2025, https://www.gdsonline.tech/autonomous-vehicle-trends-whats-next/
  26. Cybersecurity Challenges in the Uptake of Artificial Intelligence in Autonomous Driving, accessed on March 18, 2025, https://www.enisa.europa.eu/news/enisa-news/cybersecurity-challenges-in-the-uptake-of-artificial-intelligence-in-autonomous-driving
  27. Toward autonomous vehicles: A survey on cooperative vehicle-infrastructure system - PMC, accessed on March 18, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11067377/
  28. Preparing Infrastructure for Automated Vehicles - International Transport Forum (ITF), accessed on March 18, 2025, https://www.itf-oecd.org/preparing-infrastructure-automated-vehicles
  29. Localization vs. Internationalization: Research and Practice on Autonomous Vehicles across Different Cultures - VTechWorks, accessed on March 18, 2025, https://vtechworks.lib.vt.edu/bitstreams/a0f85a6b-712d-4e8f-966e-b2bd0aedae07/download
  30. An acceptance divergence? Media, citizens and policy perspectives on autonomous cars in the European Union, accessed on March 18, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC8988241/
  31. Full article: Understanding acceptance of autonomous vehicles in Japan, UK, and Germany, accessed on March 18, 2025, https://www.tandfonline.com/doi/full/10.1080/21650020.2022.2135590
  32. Cultural influence on autonomous vehicles acceptance - arXiv, accessed on March 18, 2025, https://arxiv.org/html/2404.03694v1
  33. AVIA Publishes Federal Policy Framework for Autonomous Vehicles, accessed on March 18, 2025, https://www.morganlewis.com/pubs/2025/01/avia-publishes-federal-policy-framework-for-autonomous-vehicles
  34. Autonomous Vehicles Legislation Database - National Conference of State Legislatures, accessed on March 18, 2025, https://www.ncsl.org/transportation/autonomous-vehicles-legislation-database
  35. Access to Motor Vehicle Software and Data - CRS Reports, accessed on March 18, 2025, https://crsreports.congress.gov/product/pdf/R/R48131
  36. Autonomous Vehicles | Self-Driving Vehicles Enacted Legislation - National Conference of State Legislatures, accessed on March 18, 2025, https://www.ncsl.org/transportation/autonomous-vehicles
  37. Autonomous vehicles: The legal landscape in the US | Mexico | Publications | Knowledge - Norton Rose Fulbright, accessed on March 18, 2025, https://www.nortonrosefulbright.com/en-mx/knowledge/publications/2951f5ce/autonomous-vehicles-the-legal-landscape-in-the-us
  38. The advent of autonomous vehicles may increase fraud risk - Kennedys Law, accessed on March 18, 2025, https://kennedyslaw.com/en/thought-leadership/article/2024/the-advent-of-autonomous-vehicles-may-increase-fraud-risk/
  39. Autonomous Vehicle Sensors Market Size to Hit USD 32.29 Bn by 2034, accessed on March 18, 2025, https://www.precedenceresearch.com/autonomous-vehicle-sensors-market
  40. Automated Driving | Map Data | Solutions - HERE Technologies, accessed on March 18, 2025, https://www.here.com/solutions/automated-driving
  41. Data Annotation in Autonomous Vehicle Development - BPO.MP, accessed on March 18, 2025, https://www.mpbpo.com.vn/en/data-annotation-in-autonomous-vehicle-development/
  42. 자율 주행 회사를 위한 HD 매핑 | 태스크어스, 2025년 3월 18일에 액세스 https://www.taskus.com/insights/98-quality-hd-mapping-for-an-autonomous-driving-company/
  43. 자율 주행 자동차 기술 및 솔루션 | 엔비디아 오토모티브, 2025년 3월 18일에 액세스 https://www.nvidia.com/en-us/self-driving-cars/
  44. SurfEllGAN: 자율 주행을 위한 사실적인 센서 데이터 합성 - Waymo, 2025년 3월 18일에 액세스 https://waymo.com/intl/es/research/surfelgan-synthesizing-realistic-sensor-data-for-autonomous-driving/
  45. 자율주행을 향하여: 차량과 모든 것의 통신을 위한 기술 및 데이터 - MDPI, 2025년 3월 18일에 액세스 https://www.mdpi.com/1424-8220/24/11/3411
  46. 자율 주행을 위한 센서는 몇 개입니까?- 반도체 엔지니어링, 2025년 3월 18일에 액세스 https://semiengineering.com/how-many-sensors-for-autonomous-driving/
  47. 자율주행에서의 물체 감지를 위한 HD 맵 - 클라이언트, 2025년 3월 18일에 액세스 https://www.cyient.com/hubfs/2024/Whitepaper/WP_-_HD_Maps_for_Object_Detection_in_Autonomous_Driving_-_0724%5B19%5D.pdf
  48. 자율주행 및 자율주행 - OECD, 2025년 3월 18일에 액세스 https://www.oecd.org/en/publications/automated-and-autonomous-driving_5jlwvzdfk640-en.html
  49. FHWA-HRT-21-015: 자율주행차가 고속도로 인프라에 미치는 영향, 2025년 3월 18일에 액세스 https://www.fhwa.dot.gov/publications/research/operations/21015/21015.pdf
  50. (PDF) 자율주행차에 대한 문화 간 기대 - 리서치게이트, 2025년 3월 18일에 액세스 https://www.researchgate.net/publication/367027131_Cross-Cultural_Expectations_from_Self-Driving_Cars
  51. 다양한 문화를 위한 자율주행차 인테리어 디자인: 중국, 독일, 미국의 증거 - 바네사 사우어, 알렉산더 메르텐스, 스테판 그로스, 옌스 하이틀란트, 베레나 니치, 2022년 - 세이지 저널, 2025년 3월 18일에 열람, https://journals.sagepub.com/doi/10.1177/1064804620966158
  52. 자율주행차 채택의 문화적 차이에 대한 통계 모델링 - MDPI, 2025년 3월 18일에 액세스 https://www.mdpi.com/2076-3417/11/19/9030
  53. 라틴 아메리카의 모빌리티 기술: 미래를 향해 나아가다 (2023년, 4분기) - 헬미, 2025년 3월 18일에 액세스했음 https://www.helmigroup.com/insights/mobility-tech-in-latin-america-2023-q4
  54. 2025년 3월 18일에 액세스한 LATAM - Sibros의 사이버 보안 및 데이터 보호 규정 https://www.sibros.tech/post/cybersecurity-and-data-protection-regulations-in-latam
  55. IV.라틴 아메리카와 카리브해 지역에서의 자율 주행 차량 배치 관련 과제 (2025년 3월 18일에 액세스) https://issuu.com/publicacionescepal/docs/fal388_en/s/13945526
  56. 라틴 아메리카와 카리브해의 중요 인프라: 판도를 바꾸는 기술, 2025년 3월 18일에 액세스 https://blogs.iadb.org/energia/en/critical-infrastructure-in-latin-america-and-the-caribbean-technologies-changing-the-game/
  57. 2025년 3월 18일에 액세스한... 와 관련된 역할 및 과제를 조사하기 위한 연구 https://www.mdpi.com/2032-6653/15/11/518
  58. AV 매핑 - 위프로, 2025년 3월 18일에 액세스 https://www.wipro.com/business-process/av-mapping/
  59. 히어 테크놀로지스 | 세계 #1 로케이션 플랫폼, 2025년 3월 18일에 액세스 https://www.here.com/
  60. 라틴 아메리카 대도시의 자율 주행 차량 도입 및 확산에 대한 과제 - Moviliblog, 2025년 3월 18일에 액세스 https://blogs.iadb.org/transporte/en/challenges-to-the-introduction-and-spread-of-autonomous-vehicles-in-the-latin-american-metropolis/
  61. 자율주행차 시장 규모, 점유율, 동향 | 보고서 [2030] - 포춘 비즈니스 인사이트, 2025년 3월 18일에 액세스 https://www.fortunebusinessinsights.com/autonomous-vehicle-market-109045
  62. 미래 자율주행차의 주행 스타일에 대한 문화 간 분석 - 리서치게이트, 2025년 3월 18일에 액세스 https://www.researchgate.net/publication/373965850_A_cross-cultural_analysis_of_driving_styles_for_future_autonomous_vehicles
  63. 라틴 아메리카의 자율주행차에 대한 신뢰와 인식 - 아이디어/REPEC, 2025년 3월 18일에 액세스 https://ideas.repec.org/a/ebl/ecbull/eb-21-00870.html
  64. 라틴 아메리카 2020의 자율 주행 자동차 사용에 대한 의견 | 스타티스타, 2025년 3월 18일에 액세스 https://www.statista.com/statistics/1093108/opinion-use-self-driving-cars-latin-america/
  65. APAC의 '로보택시'에는 지원 규제가 필요합니다 - 롬바드 오디에르 아시아, 2025년 3월 18일에 액세스 https://asia.lombardodier.com/insights/2025/february/supportive-regulation-key-to-keeping-apac's-'robotaxis'-in-the-d.html
  66. 인공 지능 규제: 동아시아/남아시아 및 태평양 - 의회 도서관, 2025년 3월 18일에 이용 가능 https://maint.loc.gov/law/help/artificial-intelligence/asia-pacific.php
  67. 아시아 태평양 준자율 및 완전 자율 주행 자동차 시장의 성장 추세 및 기회 - 2029년까지의 예측 - 글로브뉴스와이어, 2025년 3월 18일에 액세스 https://www.globenewswire.com/news-release/2025/01/06/3004753/28124/en/Growth-Trends-and-Opportunities-in-the-Asia-Pacific-Semi-Fully-Autonomous-Vehicle-Market-Forecasts-to-2029.html
  68. 아시아 태평양 지역의 자율주행차로 가는 길 - 테크 와이어 아시아, 2025년 3월 18일에 액세스 https://techwireasia.com/2022/03/autonomous-vehicles-asia-pacific/
  69. 규모, 점유율 및 예측별 아시아 태평양 반자동 및 완전 자율 주행 자동차 시장 2029F | TechSci 리서치, 2025년 3월 18일에 액세스 가능, https://www.techsciresearch.com/report/asia-pacific-semi-and-fully-autonomous-vehicle-market/3586.html
  70. 자율주행차 관련 규정: 2024-2030년 각국의 상황은 어떠한가?(글로벌 정책 동향) | PatentPC, 2025년 3월 18일에 액세스, https://patentpc.com/blog/regulations-for-autonomous-vehicles-where-do-countries-stand-in-2024-2030-global-policy-trends
  71. 자율주행차 - 싱가포르 - 육상교통국 (LTA), 2025년 3월 18일에 액세스 https://www.lta.gov.sg/content/ltagov/en/industry_innovations/technologies/autonomous_vehicles.html
  72. APEC 첨단 차량 규정 및 표준 - 아시아 태평양 경제 협력체, 2025년 3월 18일에 액세스함 https://www.apec.org/docs/default-source/publications/2022/12/apec-advanced-vehicles-regulations-and-standards/222_ad_apec-advanced-vehicles-regulations-and-standards.pdf?sfvrsn=17d0ad94_2
  73. 자율 주행 차량의 사이버 보안 - 우리는 도전에 맞설 준비가 되어 있습니까?- MDPI, 2025년 3월 18일에 액세스 https://www.mdpi.com/2079-9292/13/13/2654
  74. 자율주행차 윤리에 대한 심층 분석: 도덕적 다원주의를 설명하기 위한 통합적 윤리적 의사결정 프레임워크 - 프론티어, 2025년 3월 18일에 액세스 https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.632394/full
  75. 2029년 아시아 태평양 자율주행차 시장 전망 - 연구 및 시장, 2025년 3월 18일에 액세스 https://www.researchandmarkets.com/report/asia-pacific-autonomous-car-market
  76. 자율 주행 및 커넥티드 드라이빙을 위한 인프라: 최신 기술 및 미래 연구 방향 | 요청 PDF - 리서치게이트, 2025년 3월 18일에 액세스 https://bit.ly/42eQvSz
  77. 자율주행차 채택의 문화적 차이에 대한 통계 모델링, 2025년 3월 18일에 액세스 https://bit.ly/4iYQ7yU
  78. 개발도상국의 자율주행차 및 관련 인프라 구현 전망 - 리서치게이트, 2025년 3월 18일에 액세스 https://bit.ly/42g9Frw
  79. (PDF) 자율 주행을 위한 매핑: 기회와 도전 - 리서치게이트, 2025년 3월 18일에 액세스 https://bit.ly/3FPN2CN
  80. 자율주행차 수용에 미치는 문화적 영향 - 리서치게이트, 2025년 3월 18일에 액세스 https://bit.ly/4i0sEfs

데이터 라벨링 작동 방식 보기

Sapien의 데이터 라벨링 및 데이터 수집 서비스가 음성-텍스트 AI 모델을 어떻게 발전시킬 수 있는지 알아보려면 당사 팀과 상담을 예약하세요.